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The derivatives of the Riemann function are taken in the argument p = y2 - q2; 
the integers qr’, qzo follow from inequalities (3.5) considered at the boundary y = 0. 

The number of summands in the internal integrals of (4.6) differes at least by unity, 

hence a residual reflection wave may possibly be observed near a perpendicular wall. 

The function F(t,k ) defined by formulas (4.3)-(4.5). taken together, corresponds to 

the height of unsteady waves propagating along a perpendicular wall in a container. 
Expression (4.1) makes it possible to trace wave formation processes in the entire chan- 

nel. The Fourier inversion serves to conclude our problem. 

The author thanks ‘L. N, Sretenskii for his advice on this paper. 
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We investigate the spectra of kinetic and thermal fluctuation energy of isotropic turbu- 

lence, neglecting the viscosity and molecular heat conduction. Elementary solutions of 
the corresponding spectral equations obtained here, enable us to investigate the proper- 

ties of certain model spectra and a number of possible laws of decay in a simpler man- 
ner. 

As we know p], the spectral equations for the isotropic turbulence have the form 

(a/at + 2vkz)O(li, t) =- --alak 5’ (k, t) (1) 

(a/at i 2x#) U& (k, t) = --a/ak Ft (k, 1) (2) 

where k is the wave number, t is time, F and F, are the energy transfer functions, 
while @ and att are the fluctuation spectra defined by the equations 
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We shall neglect the molecular effects (X = v 9: 0) and adopt the simplest expression 

for F (k, t) which was proposed by Kovazhnyl 
F (k, t) = c/‘Vc%*~* (k, f) (5) 

together wlth its generalization to the case of the temperature field 

F, (k, 1) = 311-1a-“‘Q)“’ (k, t) @,, (k, 1) (8) 

where a and at are universal constants, whlle E and et are the dissipation parameters. 

Now, using the concept of the stability of large vortices IJ]. we shall assume that 

CD (k, 1) = A&“, k -, 9 (7) 

where A, = A (n) ls a scale constant depending only on n. So far no complete agree- 
ment exists on the question of the value of the power index n in (7). If we assume that 

Loltslanskll’s invariant exists f2], then n = 4. On the other hand, the K&man-Lln theory 

[3] gives the value n = 1, while Saffman [4] arrives at the value n = 2. Below, we shall 

consider a as a free parameter. 

Recently, Lelth [5] put forward a new hypothesis on the self-similarity of the energy 
spectrum of degenerating turbulence at large Reynolds numbers R. 

using this hypothesis we can write t 
(D (k, I) = hnV@‘+ (Q, k, = k& k,(t) = (A#)= (8) 

where CD~ (k,) is a dimensionless function such, that 

CD, (k,) = k,” (k, --, O), CD, (k,) = a,$/” (k, + w) (9) 

Determlnlng a, in the usual manner [5] we obtain 
00 
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We emphaslse that E,,* is independent of f. Comparing (8)-(10) with the expression 

PI 0 (k, 1) = ae% (t) km”’ (11) 

we easily obtain the possible laws of decay of the turbulence for various values of n ; 
these are given in [Sj. However, ln order to close the Eq. (1). the author of 153 used the 

so-called diffusion approximation for F(k, t), which does not permit obtaining me solu- 

tion ln the analytic form. nis ??I_;.8 
zT=M - - --M-1, %‘+b Y(Z) = z”M’ (2) (12) 

3n 3 

Q). (k,)=anfs Y(z), k, = CZ~Z 

which can easily be solved for n - I. When k+ + 30 , (12) yields the following asymp- 
totic representation : @ (k )=-#“+b) /("T3)k-'/., I(. -, o. 

. . t (13) 

From this, in accordance with (9), we obtain a, = a(3nTs)/(n+s). Comparing this with 
(lo), we obtain co 

E; = 
s 

n + 3 
a, (k,) dk, = m+ a 

(3n+3)/(Tl+3) (14) 
0 

Let now the form of the temperature spectrum near the initial point k = 9 be 

% (k, r) = h,,k nt, kd0 (15) 

We know [2] that if the Korsin invariant exists, nt = 2. For the sake of generality we 
shall assume that the parameter TV ls free. Extending the Lelth hypothesls [S] on the 
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self-similarity of spectra in the process of degeneration, we can write 

Ott (k, 1) = A,+? Oit (k.) (k. = k&J (16) 
where & (r) is given by (8). The dimensionless function 0,(+ (Jc.) must have the follow- 
ing asymptotes 

Q)tt’ (k,) = 

1 

k;t (k, --, 0) 

a,,,+ k;‘/’ 
(17) 

(k.; m) 

Determining o,,~ in (17) in the manner used to deflne a,, in (9) we obtain in accord- 

Table 1 
ante with [5] 

cr 

0 t-Q t-‘/n t-‘/e t-v. t-‘lr 

1 t-v. t-1 t-% t-‘1, t-“9 
e’,, = t s %’ W dk, (18) 

2 s-¶ s-% t--‘/’ s-1 t--‘/r 0 

Table 1 gives the possible laws of decay of the temperature fluctuation intensity 

Et 0) - t-O corresponding to various values of n near the initial point k = 0. The me- 

thod of obtainfag these relations is analogous to that used to obtain the laws governing 

the decay of the turbulence energy in [5]. 

Let us now turn our attention to Eq. (2). Using the expression (6). we obtain it in the 

following dimensionless form 

k,$$__nQ, l =- 
n+3 d 

1 If . 
- - k'ivO"a (k,) O1t* (k,) 
21, v3c dk, . l 

(19) 

This is linear in 0 tt+ , and its solution is 

Otl* (k,) = k: exp 

6,, = (n + 3) / 2a, JG 

Here 0, (k.) is the dimensionless kinetic energy spectrum obtained previously. 

Let us consider an example. Inserting (9) into (20) and integrating, we obtain for very 

large kt 
0~:. (k.) = k;l (i + 6,4, k. ) 

I,, ‘,, -‘/z (5r37Q) ~ f6. v;;-,,-‘1% @+s”t) k;?h 
(21) 

which agrees with (17) and moreover yields 

%nt 
~ (6, v< )-‘I* (s+sno 

(22) 

Finally, we obtain the equation 
m 

E;,, = 
t s 0~’ W dk. = 

0 

which is analogous to (14). 
We must however keep in mind, that all spectra obtained here are closely connected 

with the Kovazhnyi approximations (5) and (6). When other approximations are employed, 
En* and E:,, will be given by different formulas. At the same time, the laws of dege- 

neration will follow directly only from the Leith’s hypothesis (8) and from its generali- 
zation (16) to the c,ase of a temperature field. We must also remember the fact that all 
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results obtained here refer to the initial period of degeneracy of the isotropic turbulence, 
when the influence of viscosity and of molecular heat conduction can be neglected. 

Simultaneous application of the Leith (8) and Kovazhnyi (5) hypotheses on the self- 
similarity of the energy spectrum in the initial stage of degeneracy of the isotropic tur- 
bulence and on the form of the energy transfer function followed by their generalization 

(16) and (6) to the case of a temperature field, leads to exact elementary solutions (12) 

and (‘20) for the corresponding spectral functions 0 (k, t) and (D,, (k, i). To the best of 
the author’s knowledge. this is the first solution concerning the temperature spectrum to 

be offered. Having found the spectra, we can also determine the transfer functions 

F (h, t) and Ft (k, .i), one-dimensional spectra f (k, t). and ftl (k, i), the correlation func- 
tions B (r, t) and Btt (r, t), the asymmetry coefficients S (t) and St (t) etc., and com- 

pare them with experimental data, as was done in [S-7~. We also hope that the relative 
simplicity of the mathematical analysis expounded above will also make it possible to 

solve the problem of stability of the solutions obtained, as exhaustively as required. With- 

out this, of course, the solutions would have no practical significance. Until now, only 

some fragmentary results relevant to this problem were obtained using the Heisenberg 

approximation (see e. g. 181). This, therefore, may form a subject for future invwriga- 

tlOtL%. 
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